1

Whatever societal and ethical values we may wish to include in the development
and deployment of a computer system, if those values are going to impact the
system then at some point they must be incorporated into the software itself.
Policy options (defined by value systems) are incorporated into a product like
any other functional requirement or feature request: we create interfaces and
share code where commonality exists, and we provide platforms that allow cus-
tomization where customer-specific solutions are required. The requirements
and requests themselves come from our customers, be they individuals, enter-
prises, governments or society as a whole. After the system is deployed, customer

Policy in Public Key Infrastructures, or
How Values End Up in the Code

Brian A. LaMacchia'
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

bal@microsoft.com

Abstract

Whatever societal and ethical values we wish to include in a com-
puter system must eventually make their way into the software itself
and become part of the system’s code. Although authors of computer
systems actively attempt to make their products “extensible” and
value-neutral, in fact every software design decision made as part of
the process of building a system is a reflection of a value system. Ap-
plication programming interfaces (APIs) and service provider mod-
els, used generally to build flexibility and customizability into soft-
ware, also allow applications to override the biases built into the
code and thus construct alternative value systems. Even when a
system is explicitly designed to be value- or policy-neutral, such
as the current proposal before the IETF for an X.509-based public
key infrastructure, the extensibility of the infrastructure exists as a
result of the underlying value systems of its creators. Ultimately,
software developers must acknowledge that it is not possible to cre-
ate a value-neutral system simply by adding extensibility to a biased
system.

Introduction

1The opinions expressed in this paper are those of the author and are not necessarily those

of Microsoft Corporation.



feedback helps shape the next generation of the system and (hopefully) create
a better product.

Software vendors primarily create extensibility in systems using application
programming interfaces (APIs) and “plug-able” service provider models. Rec-
ognizing how APIs and service provider models are incorporated into current
software is key to understanding how policy and value systems end up being
reflected in source code. An API is an interface in the code that is, in essence,
a contract between the “lower-level” system and “higher-level” applications?.
When the system publishes an APIT it is claiming that some core functionality
is sufficiently common that multiple applications will wish to use it. That func-
tionality is then provided by the system itself; application authors build on top
of the APIL.

At first glance, the establishment of an API appears to be a value-neutral act.
However, creating an API is not only a statement made by the system developers
(that they believe commonality exists at the interface boundary) but also a value
judgement. An API is, in fact, a belief claim that all applications wishing to
use the functionality provided in the API wish to do so in the manner provided
by the API. Depending on how the API is constructed and exposed, application
developers may be forced to comply with a policy embedded within the API in
order to access a lower-level resource. Often this is desired, e.g. access to a disk
drive is serialized via policy embedded in filesystem APIs. (Imagine the chaos
that would ensue if every application wrote to the disk whenever it wanted to
without coordination by the underlying operating system!)

Sometimes, however, the API is an expression of belief in only the interface
and not in the underlying mechanism providing functionality. Multiple imple-
mentations of the API are possible, each perhaps with strengths, weaknesses
and side effects. In these cases an API is defined to include not only the in-
terface but also the ability to install, use and choose among multiple service
providers of the underlying functionality3. Typically at least one such provider
is included with the API as a “default” or “base” provider, but use of the default
is not mandated. Developers may, if they choose, create their own alternative
providers and install them; the only requirement on an external provider is
that it faithfully implements the API. Applications calling API functions spec-
ify which provider they want to use (the context of the call) in addition to the
nominal arguments to the function.

The main benefit of the API/provider model is that it allows the publisher
of the APIs to abstract and create layers of common functionality. A side effect

2Here the terms “system” and “applications” are used loosely to correspond to two layers
of code: code that implements the API (system) and code that uses the API as a pre-existing
component (applications).

30pen Services Architecture [4, 5], for example, is an example service provider model.
WOSA provides a set of APIs for accessing classes of services (like database servers). Client
applications that wish to use a database service call the WOSA database APIs, and database
implementers provide the “plug-ins” that translate WOSA database calls into vendor-specific
APIs.



of the proliferation of APIs and provider models, though, is that developers are
able to avoid making traditional “policy” decisions in the code through their
judicious* use. To illustrate how we create “hooks” in the code for whatever
policy and value systems are desired we need only look at current efforts to con-
struct public key infrastructures (PKIs) for electronic commerce. Through the
use of APIs, provider models, extensible data structures and arbitrary indirect
references, the PKI community has succeeded in specifying an infrastructure
with a totally flexible unspecified value system. Interoperability has been pre-
served at the data structure level, but the semantic meaning of elements must
be agreed upon out-of-band by PKI applications.

2 Building PKIs

Creating a digital signature on a document is easy; methods for doing so with
public-key cryptography have been published since the late 1970s. Validating
a digital signature is also a simple task, assuming that the validation engine
possesses the public key corresponding to the private key that created the sig-
nature in the first place. The difficult problems involve interpreting a digital
signature once the mathematics has been verified. For example, how should
applications decide whether to trust a particular digital signature and what are
the consequences of that trust policy? More generally, a digital signature is
simply evidence supplied to a policy evaluation engine [1, 2], so somehow that
signature must acquire a semantic meaning.

In the physical world signed statements acquire meaning through agreed-
upon societal structures and conventions. Both positive and negative reinforce-
ment may be used to build trust. The accumulation of credit or reputation
capital in an identity serves as a deterrent to socially unacceptable behavior;
“bad acts” cause a loss of reputation. When there is no reputation capital
at risk the force of law (that is, fear of civil or criminal penalties) is used as
the basis for trust. The digital domain requires similar conventions among its
participants; PKIs attempt to provide them. PKIs are sets of relationships
among digital principals; participants in a PKI make statements about other
participants and together those aggregate statements provide a framework for
reputation. (The most common statements in today’s PKIs are certifications
of identities and bindings between identities and public key components.) This
collection of statements, embodied in the PKI, in turn drives policy evaluation
when digital signatures are used in a decision-making process.

Both the semantics of a particular digital signature as well as the process
of choosing whether to trust that piece of information depend on value choices.
These value choices may conceivably vary from community to community, and
the “community” could be a single individual, an enterprise, or the entire Inter-
net. Thus, we find commonality in specification but not in actual function and

4Some might say “liberal.”



therefore we abstract the functional requirements via APIs and provider models.
For example, consider the PKIX Part 1 draft standard for X.509-based public
key infrastructures [3, 6], which is currently under discussion within the Internet
Engineering Task Force (IETF). PKIX Part 1 specifies the format of a digital
certificate, a binding between a public key and identity information concerning
an entity with access to the corresponding private key. The certificate format
includes mandatory and optional components as well as a private extension
mechanism that allows parties to include their own custom data. Applications
conforming to the PKIX standard are required to parse and understand the
mandatory and optional fields within the certificate but only parse private ex-
tensions. Thus, PKIX-compliant applications will always be able to understand
the syntax of the certificate but not necessarily its semantic content.

Within an X.509 certificate the semantics of the signature are specified via
both machine-readable (“key usage” and “extended key usage”) and human-
readable (“policy qualifier”) components, each of which may be extended as
necessary using the private extension mechanism. Common uses of these two
components are included in the X.509 standard (again, to guarantee a level of
interoperability) but the issuer of a certificate (the “speaker” of the digitally-
signed statement) always has the option of using his own custom variants. Thus
we have results like this: every X.509 client should know that “1.3.6.1.5.5.7.3.2%”
means “client authentication” (because it is part of the standard) but only cer-
tain browser applications will know that “1.3.6.1.4.1.311.10.3.3” means “allow
Microsoft server-gated cryptography®” because that is a private-use extension.
Obviously, the inclusion of particular semantic meanings in the standard reflects
a value choice by its authors as to what uses are sufficiently common that sup-
port for them should be widespread. By creating extensible data structures in
the standard we avoid having to make any value judgements concerning whether
these certificates should be used for any particular purpose.

Where policy and value systems really impact the PKI, however, is when a
“relying third party” attempts to use X.509 certificates to make a trust deci-
sion. The decision whether to accept a particular digital signature as evidence
of a request or action must be made based on risk, trust relationships and so-
cietal factors at the receiving end of the transaction. The requirements may be
simple: for example, the Internal Revenue Service might only accept identity
certificates signed by the U.S. Postal Service. More complicated evaluation rules
are certainly possible; “identity” may in fact be established through a reputa-

5This dotted string is an “object identifier” (OID), a unique string used as an reference
in the X.509 standard. An OID is like a URL in that it refers to a unique location in a
namespace, but OIDs cannot be de-referenced like URLs can.

6 “Server-gated cryptography” (SGC) is a technology, introduced by Microsoft and Netscape
in compliance with U.S. export regulations, that allows foreign banks to use strong cryptogra-
phy in SSL/TLS connections between their Web servers and individual browsers. Servers that
meet export requirements for strong cryptography are given certificates signed into a special
rooted hierarchy; exportable browsers are able to negotiate 128-bit connections with servers
that have such certificates.



tion network built solely out of financial instruments and the transfer of risk.
Faced with these possible choices (all plausible) implementers must necessarily
abstract away any particular evaluation method and create an API/provider
interface for trust evaluation. Systems may then ship with default evaluation
engines without forcing users to accept any particular model of trust validation.

Finally, we need to examine how actual implementations of a PKIX-compliant
PKI modify the implicit value systems within PKIX. Extensibility is great for
those building on top of a PKI but plays havoc with designers trying to build
user interfaces (UI) for PKI objects. As implementers, we make our own judge-
ment calls on issues such as:

e What features of the PKI are most likely to be useful to the majority of our
customers (and therefore our highest priority for implementation)? Fea-
tures not broadly useful to our customers are less likely to be implemented
by us but left to third party developers.

e How do we represent both mathematical and semantic concepts involving
digital signatures to users? For example, which errors or “defects” in a
certificate hierarchy should be explicitly called out to the user for atten-
tion? How do we properly convey the seriousness of designating a new
root certificate a “trusted root”?

e What information is presented to the user during the course of his interac-
tion with the PKI? Even something as simple as name presentation is an
important choice, as individuals will format names within their certificates
so they display properly on our Ul

Here values end up in the code not though any conscious effort to embed a
value system but simply as a result of the implementation process. When re-
sources are limited” features are triaged and only the strongest (most demanded)
necessarily survive. Usability is a major driving factor; grandma should not be
forced to type in the “code signing” OID (1.3.6.1.5.5.7.3.3) in order to tell the
system to check digital signatures on downloaded objects. At the same time,
enterprise customers want the ability to completely customize their environment
and are willing to write code as necessary to do things like introduce custom
certificate extensions. We are constantly faced with usability vs. flexibility
tradeoffs.

Most important to the value system the customer gets “out of the box,”
though, is the set of default options and functionality we provide for use with
the PKI. Naive users will not customize their environment (they won’t even
visit the option pages on Internet Explorer) so we must provide reasonable
default behavior at installation without any user input. Default choices are
everywhere, from components of the Ul to the base providers included as part

"First rule of computer system implementation: resources are always limited.



of our API/provider models. The signature validation engine we ship as the
default will be used by lots of users (perhaps almost everyone), so there is good
reason to choose wisely.

In summary, we see that authors of computer systems actively attempt to
make their products “extensible” and value-neutral to counter biases that are
inherent in their creations. Although we may not like to admit this fact, every
design decision made as part of building a system is a reflection of a value system.
APIs and provider models are used to construct open platforms, which as a side
effect serves to counter the built-in biases in the code and allow the insertion
of components that construct alternative value systems. Of course, should the
values of our customers change that same interface allows rapid deployment of
updated system elements implementing those changes.

References

[1] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust Management,”
in Proceedings of the 1996 IEEE Symposium on Security and Privacy, pp.
164-173.

[2] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss.
“REFEREE: Trust Management for Web Applications,” World Wide Web
Journal 2 (1997), pp. 127-139. (Reprinted from Proceedings of the Sixth
International World Wide Web Conference, World Wide Web Consortium,
Cambridge, 1997, pp. 227-238.)

[3] PKIX Working Group, Internet Engineering Task Force. “Internet Public
Key Infrastructure: X.509 Certificate and CRL Profile,” work in progress.
(Draft as of 10/14/1997 available from ftp://ietf.org/internet-drafts/draft-
ietf-pkix-ipki-part1-06.txt.)

[4] Microsoft Corporation. “Windows Open Services Architecture (WOSA),”
Microsoft Backgrounder, March 1992.

[5] Microsoft Corporation. “Windows Open Services Architecture (WOSA): De-
livering Enterprise Services to the Windows-Based Desktop,” Corporate
Backgrounder, July 1993, Part No. 098-53420.

[6] ISO/IEC JTC1/SC 21, Draft Amendments DAM 4 to ISO/IEC 9594-2,
DAM 2 to ISO/IEC 9594-6, DAM 1 to ISO/IEC 9594-7, and DAM 1 to
ISO/IEC 9594-8 on Certificate Extensions, 1 December, 1996.



